Gravity Wave Activity in the Stratosphere and Mesosphere at the South Pole (2024)

    Collins, R. L. / Gardner, C. S. / Committee on Space Research; Scientific Commission C

    • Neue Suche nach: Collins, R. L.
    • Neue Suche nach: Gardner, C. S.
    • Neue Suche nach: Committee on Space Research; Scientific Commission C
    • Neue Suche nach: Collins, R. L.
    • Neue Suche nach: Gardner, C. S.
    • Neue Suche nach: Hernandez, G.
    • Neue Suche nach: Smith, R. W.
    • Neue Suche nach: Committee on Space Research; Scientific Commission C

    In: Southern hemisphere upper atmosphere and ionosphere 5 ; 81-90 ; 1995

    • ISBN:

      0080426255

    • ISSN:

      0273-1177

    • Aufsatz (Konferenz) / Print

    Wie erhalte ich diesen Titel?

    TIB vor Ort

    Nachweis Campus LUH

    TIB-Dokumentlieferung Kostenpflichtig bestellen

    Preisinformation

    Exportieren, teilen und zitieren

    Preisinformation

    Bitte wählen Sie ihr Lieferland und ihre Kundengruppe

    * Pflichtfeld

    • Titel:

      Gravity Wave Activity in the Stratosphere and Mesosphere at the South Pole

    • Beteiligte:

      Collins, R. L. ( Autor:in ) / Gardner, C. S. ( Autor:in ) / Hernandez, G. / Smith, R. W. / Committee on Space Research; Scientific Commission C

    • Kongress:

      Meeting C.3; 30th Scientific assembly, Southern hemisphere upper atmosphere and ionosphere ; 1994 ; Hamburg; Germany

    • Erschienen in:

      Southern hemisphere upper atmosphere and ionosphere , 5 ; 81-90

      ADVANCES IN SPACE RESEARCH -OXFORD- ; 16, 5 ; 81-90

    • Verlag:

      Pergamon

      • Neue Suche nach: Pergamon
    • Erscheinungsdatum:

      01.01.1995

    • Format / Umfang:

      10 pages

    • ISBN:

      0080426255

    • ISSN:

      0273-1177

    • Medientyp:

      Aufsatz (Konferenz)

    • Format:

      Print

    • Sprache:

      Englisch

    • Schlagwörter:

      COSPAR , southern hemisphere , upper atmosphere , ionosphere

    • Datenquelle:

      British Library Conference Proceedings

    © Metadata Copyright the British Library Board and other contributors. All rights reserved.

    Inhaltsverzeichnis Konferenzband

    Die Inhaltsverzeichnisse werden automatisch erzeugt und basieren auf den im Index des TIB-Portals verfügbaren Einzelnachweisen der enthaltenen Beiträge. Die Anzeige der Inhaltsverzeichnisse kann daher unvollständig oder lückenhaft sein.

    3

    Thermospheric Dynamics in the Southern Polar Region

    Rees, D. / Hernandez, G. / Smith, R. W. / Committee on Space Research; Scientific Commission C et al. | 1995

    Gedruckte Ausgabe

    17

    Optical Interferometric Observations of 630-nm Intensities, Thermospheric Winds and Temperatures Near the Geomagnetic Equator

    Meriwether, J. W. / Biondi, M. A. / Committee on Space Research; Scientific Commission C et al. | 1995

    Gedruckte Ausgabe

    27

    Observations of Thermospheric Neutral Winds and Temperatures at Cachoeira Paulista (23S, 45W) During a Geomagnetic Storm

    fa*gundes, P. R. / Sahai, Y. / Bittencourt, J. A. / Takahashi, H. / Committee on Space Research; Scientific Commission C et al. | 1995

    Gedruckte Ausgabe

    31

    Upper Thermospheric Temperatures at South Pole

    Smith, R. W. / Hernandez, G. / Committee on Space Research; Scientific Commission C et al. | 1995

    Gedruckte Ausgabe

    41

    Thermospheric Horizontal Winds Above Mawson, Antarctica

    Conde, M. / Dyson, P. L. / Committee on Space Research; Scientific Commission C et al. | 1995

    Gedruckte Ausgabe

    53

    Southern Hemisphere Dynamics Observed by WINDII: The Wind Imaging Interferometer on the UARS Mission

    Shepherd, G. G. / McLandress, C. / Committee on Space Research; Scientific Commission C et al. | 1995

    Gedruckte Ausgabe

    61

    What Can Be Learned from Rotational Temperatures Derived from Ground-Based Airglow Observations about the Aeronomy of the Southern Hemisphere

    Scheer, J. / Committee on Space Research; Scientific Commission C et al. | 1995

    Gedruckte Ausgabe

    71

    Antarctic High-latitude Mesospheric Dynamics

    Hernandez, G. / Smith, R. W. / Fraser, G. J. / Committee on Space Research; Scientific Commission C et al. | 1995

    Gedruckte Ausgabe

    81

    Gravity Wave Activity in the Stratosphere and Mesosphere at the South Pole

    Collins, R. L. / Gardner, C. S. / Committee on Space Research; Scientific Commission C et al. | 1995

    Gedruckte Ausgabe

    91

    Ground Based Radar Investigation of the Antarctic Mesosphere

    Von Biel, H. A. / Committee on Space Research; Scientific Commission C et al. | 1995

    Gedruckte Ausgabe

    99

    Modelling Studies of North-South Differences in the Ionosphere at Mid Latitudes

    Balan, N. / Bailey, G. J. / Titheridge, J. E. / Committee on Space Research; Scientific Commission C et al. | 1995

    Gedruckte Ausgabe

    103

    Radio Studies of the Southern Hemisphere High-latitude Ionosphere

    Dyson, P. L. / Parkinson, M. L. / Quach, A. D. / Smith, P. R. / Committee on Space Research; Scientific Commission C et al. | 1995

    Gedruckte Ausgabe

    113

    Observations of Gravity Waves Associated with Mid-Latitude Spread-F

    Dyson, P. L. / Johnston, D. L. / Scali, J. L. / Committee on Space Research; Scientific Commission C et al. | 1995

    Gedruckte Ausgabe

    117

    Relationship Between Geneation of Equatorial F-Region Plasma Bubbles and Thermospheric Dynamics

    fa*gundes, P. R. / Sahai, Y. / Bittencourt, I. A. / Takahashi, H. / Committee on Space Research; Scientific Commission C et al. | 1995

    Gedruckte Ausgabe

    121

    Geomagnetic Pulsations in the Ionosphere

    Menk, F. W. / Marshall, R. A. / Waters, C. L. / Dunlop, I. S. / Committee on Space Research; Scientific Commission C et al. | 1995

    Gedruckte Ausgabe

    131

    Global Electrodynamics from Superpressure Balloons

    Holzworth, R. H. / Hu, H. / Committee on Space Research; Scientific Commission C et al. | 1995

    Gedruckte Ausgabe

    141

    Upper Atmosphere Research at INPE

    Clemesha, B. R. / Takahashi, H. / Committee on Space Research; Scientific Commission C et al. | 1995

    Gedruckte Ausgabe

    151

    Australian Antarctic Middle and Upper Atmospheric Physics - A New Direction

    Morris, R. J. / Monselesan, D. P. / Klekociuk, A. R. / Committee on Space Research; Scientific Commission C et al. | 1995

    Gedruckte Ausgabe

    Wie erhalte ich diesen Titel?

    TIB vor Ort

    Nachweis Campus LUH

    TIB-Dokumentlieferung Kostenpflichtig bestellen

    Preisinformation

    Zitierformate anzeigen

    Exportieren, teilen und zitieren

    Gravity Wave Activity in the Stratosphere and Mesosphere at the South Pole (2024)

    FAQs

    What are gravity waves in the mesosphere? ›

    Gravity waves in the atmosphere are the waves with gravity and buoyancy force as the restoring forces. Gravity waves will significantly impact the Mesosphere Lower / Thermosphere (MLT), and the breaking of gravity waves is the key factor to cause the cool summer and warm winter in the Mesopause region.

    What is the gravity wave in the atmosphere? ›

    Atmospheric gravity waves are generated by a variety of mechanisms that cause vertical displacements of air parcels, such as meteorological disturbances or cumulous convection within the troposphere, instability in jet streams, and the interactions of surface winds with topography.

    What is the gravitational wave in the atmosphere? ›

    A gravity wave is nothing more than a wave moving through a stable layer of the atmosphere. Thunderstorm updrafts will produce gravity waves as they try to punch into the tropopause. The tropopause represents a region of very stable air.

    How do gravity waves affect tornadoes? ›

    According to Coleman, wave-storm interactions are very important. If a gravity wave hits a rotating thunderstorm, it can sometimes spin that storm up into a tornado.

    Is there gravity in the stratosphere? ›

    In the middle stratosphere (30–40 km), there is higher gravity wave activity near the equator in autumn in the middle stratosphere than in other seasons in 2020, and much less in 2021. The gravity wave activity is low (maximum 5 J kg1) compared to the lower stratosphere (maximum 10 J kg1).

    What are 3 things that happen in the mesosphere? ›

    The main most important features in this region are strong zonal (East-West) winds, atmospheric tides, internal atmospheric gravity waves (commonly called "gravity waves"), and planetary waves. Most of these tides and waves start in the troposphere and lower stratosphere, and propagate to the mesosphere.

    How do you explain gravity waves? ›

    Gravitational waves are 'ripples' in space-time caused by some of the most violent and energetic processes in the Universe. Albert Einstein predicted the existence of gravitational waves in 1916 in his general theory of relativity.

    Where are gravity waves found? ›

    Compact binary inspiral gravitational waves are produced by orbiting pairs of massive and dense ("compact") objects like black holes and neutron stars. There are three subclasses of "compact binary" systems in this category: Binary Neutron Star (BNS) - two neutron stars orbiting each other.

    How do gravity waves affect us? ›

    From even the distance of the nearest star, gravitational waves would pass through us almost completely unnoticed. Although these ripples in spacetime carry more energy than any other cataclysmic event, the interactions are so weak that they barely affect us.

    How does gravity affect the atmosphere? ›

    As gravity hugs the blanket of air to the Earth's surface, what physicists call a density gradient is set up in the air. The air near the ground is pulled on by gravity and compressed by the air higher in the sky. This causes the air near the ground to be denser and at a greater pressure than air at higher elevations.

    Why are gravitational waves important? ›

    The gravitational waves as we understand them are going to bring us very different kinds of information about the universe that you could never see with electromagnetic waves. This timeline of the universe over 13.8 billion years, with stars emerging about 180 million years after the Big Bang.

    What are gravitational waves in Quizlet? ›

    What are gravitational waves? " a wave propagated on a liquid surface or in a fluid through the effects of gravity"

    How fast do gravity waves move? ›

    Gravitational waves are invisible. However, they are incredibly fast. They travel at the speed of light (186,000 miles per second). Gravitational waves squeeze and stretch anything in their path as they pass by.

    Can gravity cause natural disasters? ›

    We know, low tides and high tides occur due to the combined effects of the gravitational forces exerted by the moon and the sun on earth. Similarly, earthquakes are caused by the combined effects of the gravitational forces of the sun, the moon, and the other planets on Earth.

    What are internal gravity waves in the atmosphere? ›

    Internal gravity waves are waves occurring in the interior of a stratified fluid, with buoyancy providing the restoring force which opposes vertical displacements.

    What is the meaning of gravity waves? ›

    A gravitational wave is an invisible (yet incredibly fast) ripple in space. Gravitational waves travel at the speed of light (186,000 miles per second). These waves squeeze and stretch anything in their path as they pass by. A gravitational wave is an invisible (yet incredibly fast) ripple in space.

    What is the gravitational wave? ›

    “Gravitational waves are ripples in spacetime. When objects move, the curvature of spacetime changes and these changes move outwards (like ripples on a pond) as gravitational waves. A gravitational wave is a stretch and squash of space and so can be found by measuring the change in length between two objects.”

    What 2 objects are found in the mesosphere? ›

    Some material from meteors lingers in the mesosphere, causing this layer to have a relatively high concentration of iron and other metal atoms. Very strange, high-altitude clouds called "noctilucent clouds" or "polar mesospheric clouds" sometimes form in the mesosphere near the poles.

    Top Articles
    Latest Posts
    Article information

    Author: Mr. See Jast

    Last Updated:

    Views: 6786

    Rating: 4.4 / 5 (75 voted)

    Reviews: 82% of readers found this page helpful

    Author information

    Name: Mr. See Jast

    Birthday: 1999-07-30

    Address: 8409 Megan Mountain, New Mathew, MT 44997-8193

    Phone: +5023589614038

    Job: Chief Executive

    Hobby: Leather crafting, Flag Football, Candle making, Flying, Poi, Gunsmithing, Swimming

    Introduction: My name is Mr. See Jast, I am a open, jolly, gorgeous, courageous, inexpensive, friendly, homely person who loves writing and wants to share my knowledge and understanding with you.